Thursday, July 17, 2008

Research on GLOBAL WARMING

Firstly, I started my assignment by doing researches about GLOBAL WARMING:

Global warming is the increase in the average measured temperature of the Earth's near-surface air and oceans since the mid-twentieth century, and its projected continuation.
The term "global warming" refers to the warming in recent decades and its projected continuation, and implies a human influence.[11][12] The United Nations Framework Convention on Climate Change (UNFCCC) uses the term "climate change" for human-caused change, and "climate variability" for other changes.[13]. The term "climate change" recognizes that rising temperatures are not the only effect.[14] The term "anthropogenic global warming" (AGW) is sometimes used when focusing on human-induced changes.

Causes

Components of the current radiative forcing as estimated by the IPCC Fourth Assessment Report.
Components of the current radiative forcing as estimated by the IPCC Fourth Assessment Report.

The Earth's climate changes in response to external forcing, including variations in its orbit around the Sun (orbital forcing),[15][16][17], changes in solar luminosity, volcanic eruptions,[18] and atmospheric greenhouse gas concentrations. The detailed causes of the recent warming remain an active field of research, but the scientific consensus[19][20] is that the increase in atmospheric greenhouse gases due to human activity caused most of the warming observed since the start of the industrial era. This attribution is clearest for the most recent 50 years, for which the most detailed data are available. Some other hypotheses departing from the consensus view have been suggested to explain most of the temperature increase. One such hypothesis proposes that warming may be the result of variations in solar activity.[21][22][23]

None of the effects of forcing are instantaneous. The thermal inertia of the Earth's oceans and slow responses of other indirect effects mean that the Earth's current climate is not in equilibrium with the forcing imposed. Climate commitment studies indicate that even if greenhouse gases were stabilized at 2000 levels, a further warming of about 0.5 °C (0.9 °F) would still occur.[24


Temperature changes

Two millennia of mean surface temperatures according to different reconstructions, each smoothed on a decadal scale. The unsmoothed, annual value for 2004 is also plotted for reference.
Two millennia of mean surface temperatures according to different reconstructions, each smoothed on a decadal scale. The unsmoothed, annual value for 2004 is also plotted for reference.
Main article: Temperature record

Recent

Global temperatures on both land and sea have increased by 0.75 °C (1.35 °F) relative to the period 1860–1900, according to the instrumental temperature record. This measured temperature increase is not significantly affected by the urban heat island effect.[55] Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade).[56] Temperatures in the lower troposphere have increased between 0.12 and 0.22 °C (0.22 and 0.4 °F) per decade since 1979, according to satellite temperature measurements. Temperature is believed to have been relatively stable over the one or two thousand years before 1850, with possibly regional fluctuations such as the Medieval Warm Period or the Little Ice Age.[citation needed]

Sea temperatures increase more slowly than those on land both because of the larger effective heat capacity of the oceans and because the ocean can lose heat by evaporation more readily than the land.[57] The Northern Hemisphere has more land than the Southern Hemisphere, so it warms faster. The Northern Hemisphere also has extensive areas of seasonal snow and sea-ice cover subject to the ice-albedo feedback. More greenhouse gases are emitted in the Northern than Southern Hemisphere, but this does not contribute to the difference in warming because the major greenhouse gases persist long enough to mix between hemispheres.[citation needed]

Based on estimates by NASA's Goddard Institute for Space Studies, 2005 was the warmest year since reliable, widespread instrumental measurements became available in the late 1800s, exceeding the previous record set in 1998 by a few hundredths of a degree.[58] Estimates prepared by the World Meteorological Organization and the Climatic Research Unit concluded that 2005 was the second warmest year, behind 1998.[59][60] Temperatures in 1998 were unusually warm because the strongest El Niño-Southern Oscillation in the past century occurred during that year.[61]

Anthropogenic emissions of other pollutants—notably sulfate aerosols—can exert a cooling effect by increasing the reflection of incoming sunlight. This partially accounts for the cooling seen in the temperature record in the middle of the twentieth century,[62] though the cooling may also be due in part to natural variability. James Hansen and colleagues have proposed that the effects of the products of fossil fuel combustion—CO2 and aerosols—have largely offset one another, so that warming in recent decades has been driven mainly by non-CO2 greenhouse gases.[63]

Paleoclimatologist William Ruddiman has argued that human influence on the global climate began around 8,000 years ago with the start of forest clearing to provide land for agriculture and 5,000 years ago with the start of Asian rice irrigation.[64] Ruddiman's interpretation of the historical record, with respect to the methane data, has been disputed.[65]


Pre-human climate variations

Curves of reconstructed temperature at two locations in Antarctica and a global record of variations in glacial ice volume. Today's date is on the left side of the graph.
Curves of reconstructed temperature at two locations in Antarctica and a global record of variations in glacial ice volume. Today's date is on the left side of the graph.
Further information: Paleoclimatology
See also: Snowball Earth

Earth has experienced warming and cooling many times in the past. The recent Antarctic EPICA ice core spans 800,000 years, including eight glacial cycles timed by orbital variations with interglacial warm periods comparable to present temperatures.[66]

A rapid buildup of greenhouse gases amplified warming in the early Jurassic period (about 180 million years ago), with average temperatures rising by 5 °C (9 °F). Research by the Open University indicates that the warming caused the rate of rock weathering to increase by 400%. As such weathering locks away carbon in calcite and dolomite, CO2 levels dropped back to normal over roughly the next 150,000 years.[67][68]

Sudden releases of methane from clathrate compounds (the clathrate gun hypothesis) have been hypothesized as both a cause for and an effect of other warming events in the distant past, including the Permian–Triassic extinction event (about 251 million years ago) and the Paleocene–Eocene Thermal Maximum (about 55 million years ago).



source:http://en.wikipedia.org/wiki/Global_warming

No comments: